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ON THE FUNDAMENTAL RETENTION 
EQUATION IN GRADIENT ELUTION 

L IOU ID CHROMATOGRAPHY 

Michel Martin 
Laboratoire de Chimie Analytique Physique 

Ecole Polytechnique 
91 128 Palaiseau, France 

SUMMARY 

Basic integral equations used to predlct the solute retention times or volumes i n  gradient 
elution liquid chromatography are carefully examined. In order to simplify the integration 
procedure, one strongly suggests to select a convention independent of the solvent composition for 

defining the solute W i t y  factor. Most of these equations make use of the volume Y' of mobile phase 
which has passed through the peak center (or band maximum) as the integration variable. It is 
shown that, instead of V', one can use the volume V flowing from the column i n  these equations as the 
integration variable in combination with retention conditions prevailing at the column inlet rather 
than actually within the column, provided that the gradient i s  d i s p l d  without modification through 
the column, i.e. without retention of the mobile phase components. The general relention equation i s  
derived for a binary gradient where the strong component of the mobile phase is retained i n  such 
conditions that its distribution isotherm is linear, i.9. it has a constant capacity factor, k'b. This 

m a 1  equation i s  solved i n  the specific c ~ s e  of a Hm solvent strength gradient. It is shown that 

the retention of the strong component of the mobile phase 1- to an increase of the solute retention 

time approximately equal to k'b b / 2, where b i s  the elution time of an inert solute. 
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INTRODUCTION 

MARTIN 

The technique of gradient elution liquid chromatography is widely practised toda/ in  

analytical laboratories. In this technique, the composition of the mobile phase enterlng the column is 

modified during the course of the separation of a sample. The main objsctive pursued when 

performing such a technique is to provide adequate resolution over most of the length of a 

chromatogram of a relatively complex sample ( 1). Indeed, i n  constant mobile phase composition 

(i.e., isocratic) liquid chromatography, the resolution of the early eluting compounds may be 

impaired by lack of adequate retention while the retention time of the most retained compounds may 

be practically prohibitive and, at the same time, !he concentration of these solutes when they elute 

from the column may be too low for adequate detection. Modifying the composition of the mobile phase 

during a run allows to select an initial eluent composition of sufficiently low solvent strength to 

provide a satisfying retention of the first eluting compounds, then to increase the eluotropic strength 

in  order to maintain the retention of the last eluting solutes within a reasonable range. Oradient 

elution analysis may be performed for rmching other gwls, such as scouting the polarity range of an 

unknown sample or selecting the optimal moblle phase for an lsocratlc separatlon (2). 

It is obviously more complicated to perform a gradient elution analysis than an isocratic 

separation. The chromatographer must indeed carefully select additional parameters which influence 

the retention of the solutes as well as their separation, such as the inttial and final compositions of 

the mobile phase, the duration of the grdient run, the shape and rate of variation of the mobile phase 

composition as a function of time and the mobile phase flow-rate. In order to take full profit of the 

gradient elution capability of an instrument, one h e  to select optimal values of these interrelated 

parameters for the sample at hand. This implies tha! one is able to derive the functional dependence 

of the separation performances, and especially of the retention, on these parameters. Because the 

solute migration i n  gradient elution does not occur in  stW-state conditions, the expression of the 

retention is more complex than i n  isocratic elution. In spite of this increased complication, the 
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FUNDAMENTAL RETENTION EQUATION 1811 

fundamental equation for the calculation of the retention volume (or, of the retention time) in  

gradient elution has been claimed to be derived "without difficulty" (3) or, even, "easily" (4). 

However, when one looks at the various equations of retention published in the literature, one i s  

striken by the fact that, firstly, different basic expressions are used, and, secondly, that when 

similar equations are used, the variables entering these equations do not always have the m e  

meaning. 

The purpose of this note is to describe i n  which conditions these different equations are 

equivalent and emphasize the approximations done at each step of their derivation. 

THEORY 

FU&&dr8&7~Jh7 wiJh7 Jh @Vl&#i ekdJh7 h$WdW?r@?&X'~h)4 

The derivation of the retention equation of a solute in  gradient elution proceeds from 

integration of the elementary migration steps of this solute i n  an environment of a fixed composition. 

In the following, as usually done i n  analytical chromatography, a very small amount of solute is 

supposed to be injected at the inlet of the column during a very short time, at time 0. After a time 1, 

the solute has migrated 8 distance z along the column axis. Here, t refers to the location of the center 

of gravity of the solute zone at time 1. In this note focusing on solute retention i n  gradient elution, one 

neglects the variation of eluent composition within the solute mne, that is, one assumes that the 

column is of sufficiently high efficiency for these variations to be negligibly small. In these 

conditions, the solute, at position z at time t ,  is surroundad by a mobile phase of a given composition 

c(z, t). During the time increment d, the solute i s  displaced a distance d! which depends on i ts 

migration velocity, I )  [ dz ,  t)l, i n  this mobile phascomposition : 
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1812 MARTIN 

According to the classical chromatographic theory, the solute velocity is related to the mobile phase 

chromatographic velocity, u, through the solute capacity factor, k' : 

(2) u = u / ( l  + k') 

In the following, one assumes that the solute concentration w i l l  be small enough for its distrlbution 

isotherm between the mobile and stationary phases to be linear, so that k' i s  a constant. 

Furthermore, one wil l  assume it is so whatever the mobile phase composition. From equations 1 and 

2, one obtains the expression of the basic elementary migration step In gradient elution liquid 

chromatography : 

It has to be noted that, although commonly used, the concept of capacity factor is not in  

liquid chromatography, where multicomponent mobile phass$ are usad, fls straigthforward as it is i n  

gas chromatography. Indeed, basically, k' represents the ratlo of the number of moles of solute In  the 

stationary p h m  to the number of moles of solute in the mobile phase. Because with rnuiticornponent 

phases, a mposit ion gradlent generally is developed at the vicinity of the interface, an arbitrary 

convention has to be deftned about the position of the surfam dividlng the two phases i n  order to be 

able to count the number of moles of solutes i n  each side of the Interface. Therefore, the value of the 

capacity factor i s  associated to the selected mvention. Various mventions can possibly be selected 

i n  liquid chromatography (5). The/ lead to various possible values of the volume of the mobile 

phase, Vm, mtafned ln the column. Some of the possible conptions &pend on the composition of the 
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FUNDAMENTAL RETENTION EQUATION 1813 

mobile phase, and so do the corresponding Vm values. One imagines easily that such a situation poses 

a considerable problem when trying to canpute the retention wlume or retention time of a solute in  

gradient elution conditions, where the composition of the mobile phase is constantly changing. The 

necessity of simplification required for solving the gradient elution retention equation provides a 

strong argument for selecting a convention which gives a Vm value independent on the mobile phase 

cornposition. Such is the case for the mobile phase volume determined by the weighlng method using 

two solvents of different densities (6). 

One wil l  assume in  the following that such a mwnt ion  i s  adopted. As Vm i s  unambiguously 

defined and is constant whatever the mobile phase present i n  the column, so are the mobile phm 

velocity, u, prwlded that the flow-rate, F,  i s  mstant, and the elution time, b, of an inert solute, 

i.e. a solute which is displaced along the column at the velacity of the mobile phase, since we have : 

(5) to Vm/F L / U  

where L is the mlumn length. Using equations 4 and 5, one obtains a reduced form of the differential 

equation 3 : 

whlch represents the incremental fractional displacement dlstance along the column durlng the tlme 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
2
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



1814 MARTIN 

interval dt relative to t,, which serves as a scale for measuring the time. Tne solute retention time, 

tr, which is the time at which the solute has been displaced a length L, is then obtained from the 

upper l imlt of integration of the right-hand sido of this equation : 

The variation of the mobile phase composition c with the position and time has to be known as well as 

the dependence of k' on c i n  order to solve this equation. A very similar equation can be written to 

express the retention volume of a solute, Vr, instead of Its retention tlme. As Vr is equal to F t,., one 

easily obtains usingequation 5 : 

where V is the volume of mobile phase which has flown from the column since the solute injection. 

Here k'[c(z/L, V/Vm)I represents the solute capacity factor i n  the mobile phase composition present 

at distance z from the column when a volume V of mobile phase has flown from the column. 

A/t@lMt&8 fUM&V~Wh/f8t#fIh wtl& fU'@'&&7f BIUtrh 

Although expressions similar to equations 7 or 8 are found i n  the literature (71, mast of 

the bask retention equetions are written in  different forms bv considering not the incremental 

volume of eluent which hes flown from the column but the incremental volume of eluent which has 

psssed through the solute zone maximum. I t  is quite Importent to correctly distinguish these two 

volumes. Let us consider first the solute migration in  an Isacratic analysis. If a solute is unretained, 
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FUNDAMENTAL RETENTION EQUATION 1815 

it is displaced along the column by the flow of incoming eluent, ahead of this fresh eluent. Its elution 

volume is equal to Vm, the volume of mobile phase mtained in  the column. If, now, the solute is 

retained, it spends some time in  the stationary phase and a larger volume of mobile phase, Vr,  is 

required to elute it from the column. This volume is made of the volume Vm necessary to sweep the 

mobile p h m  alrsedy contained i n  the column before the solute injection, and of an additional part, 

V',., the corrected retention volume, required to "extract" the solute from the stationary phase. 

Hence, V'r, which is equal to k' Vm, is the volume of mobile phase which passes through the solute 

peak maximum during the time spent by the solute i n  the column (rigorously, v'r should be the 

volume of eluent which passes through the center-of-gravity of the solute zone during the time it is 

i n  the column, but, as the solute zone has been assumed to be very narrow, the peak maximum and 

the peak center-of-gravity are supposed to be identical). I f  a volume V'r must pass through the peak 

maximum before the peak is eluted, i. e. before it migrates a d i s t m  equal to the length L of the 

column, the incremental volume dv' which has to pass through the peek to displae it by a distam cb 

is then such that : 

which gives : 

This equation Serves as the basis of various retention equations in grdient elution 

chromatography ( 1,8- 17). By integration, it gives : 
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1816 MARTIN 

where k'[c(z/L, V'/Vm)] represents the instantaneous value of the capxity fs tor  of the solute in  

the mobile phase composition present at distance z from the column inlet when a volume V' of mobile 

phase has passed through the peak maximum. Equations 8 and 1 1 are equally correct and can both be 

used to describe the retention characteristics in  gradient elution. However, it is interesting to 

emphasize their difference : 1 )  their denominators represent the spatio-temporal dependence of k' 

and 1 + k', respectively; 2) tha/ provide as the integration limits, the retention volume and the 

corrected retention volume, which like i n  isocratic elution are related by : 

and 3) the integration variable is, in  one case, the volume which of eluent whm fZm ffm f/re 

#/umn(or, which is equivalent, into the column) and, i n  the other case, the volume of eluent whkh 

pases throb@ f/nep& maxihum It i s  important to correctly distinguish these two variables. 

Indeed, from abwe equations, one can easily write : 

(13) dy' = d y k '  
1 + k '  

In fact, one finds in  the literature, retention equations similar to equation 1 1  i n  which the 

integration variable is mistakenly written to be the volume V of eluent entering the column. 

Pr&timl~icrelenlkn tqutims 

In order to u s  equations 8 (or 7) and 1 1  I for m p u t i n g  the retention characteristics, it 
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FUNDAMENTAL RETENTION EQUATION 1817 

i s  nmssary to know 1)  the dependence of k' on the mobile phase composition, 2) the gradient profile 

delivered by the gradient generator, i. e., the curve of variation of the mobile phase composition 

entering the column as a function of time ( i n  this treatment, one neglects the time delay introduced 

by the connecting tubes between the gradient delivering unit and the column inlet, but taking into 

account this time is  relatively straigthforward, see Refs. 1 and 151, and 3 )  the rate of 

transportation of the different mobile phase compositions within the column. The dependence of k' on 

c depends on the type of chromatographic system (ion-exchange, adsorption, reversed-phase, ... and 

can be known either using an appropriate retention model or by experimental measurement. The 

composition dependence on time at the column inlet i s  generally selected by the chrometographer and, 

thus, known. Much less accessible to the analyst i s  the rate of transportation of a given composition 

within the column and much more complicated are the solutions of equations 8 or 1 1 in the case of a 

complex mode of transportation of the gradient. 

This i s  one of the reasons for which al l  modern theoretical treatments of gradient elution 

m u m e  that fhegmwieot is transpartsdunmdifiktlwithih them/umn, i. 8. they do not change their 

shape i n  the column and they are displmd at the constant velocity of the eluent. In this condition. it 

i s  relatively easy to relate the composition at a given point i n  the column to the cornposition at the 

column inlet. indeed, at time t, the composition at distance z from the column inlet i s  equal to the 

composition which entered the column same time, z/u, earlier : 

(14) C k  t) = c(0, t - z/u) 

or, i n  reduced coordinates, since L = u to : 

Equation 7 becomes immediately : 
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1818 MARTIN 

Similarly, one has: 

These equations can be solved if one knows the functions k'(c) and c( t or V )  at the column entrance. 

Let replace in equalion 16 the vwiable tit,, by the new vwfabble X such that : 

One has : 

According to equations 6 and 15, one has : 

Combining squations 1 9 and 20 gives : 
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FUNDAMENTAL RETENTION EQUATION 

Thisequationcan beintegratedbynotingthat,forz/L=O,X=Oandthat,forz/L=l ,X=tr/b- 1 :  

1819 

It is Seen i n  this equation, where the reduced time variable X srves as a dummy integration 

variable, that the integrand only depends on the composition of the mobile phase at the column inlet. 

Since the second integral in  equation 22 represents a time function of the mobile phase composition 

integrated between times 0 and tr/ b - 1 , it can be written as : 

where the upper integration l imit is the corrected retention time, l',-, scaled to b. As t'r is equal to 

V'r / F,  one can write equation 23 in  terms of volume, which gives, using the same correspondence 

as that between equations 7 and 8 : 

Equation 24 has been used frequently to compute the mrected retention volumes i n  various gradient 

elution situations ( 1,  14, 15). It closely 'resembles equation 11 as it contains only k' in  the 

denominator and gives the corrected retention volume (not the retention volume) i n  the upper 

integration limit. However, there are two major differences between these two equations : 1 )  the 
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1820 MARTIN 

integration variable is now V, the eluent volume flowing from (or into) the column (not the volume 

passing through the solute zone center), 2) k' refers to the value i n  the mobile phase composition at 

the column inlet, not at the actual l w t i o n  of the peak maximum (or center) i n  the column. This 

considerably simplifies the computation of the retention volume. However, it has not always been 

perceived that this simplification is made possible &mm d the BJsumptiM tht the gr&&t is 

dt$?kdm,turMa&? t&a7/umn, as demonstrated above. 

Such an assumption implies that there is no distortion of the gradient profile by 

dispersion as well as no uptake of the stronger component of the mobile phase by the stationary phase 

( 3 ,  16). This is usually a situation encountered i n  reversed-phase liquid chromatography with 

gradient of methanol, acetonitrile or tetrahydrofuran in water, these compounds being generally only 

weakly retained by the initial mobile phase and frequently much less retained than the sample 

solutes. In spite of their low intrinsic retention, these solvents can be very effective in  reducing the 

retention of other compounds. This i s  because of the paramount role of mobile phase interactions i n  

this chromatographic mode. The situation mwy be quite different i n  other types of chromatographic 

systems where interctions in  the stationary phase play a major role on retention, such as in 

ion-exchange chromatography or in  adsorption liquid chromatography. In these cases, if the two 

mobile components differ greatty i n  retention properties, the adsorption of the strongest component 

on the stationary phase leads to the so-called demixing effect. 

&waI refmt?& &p3ti# ?h the &%i? of 8 h?&y gr"Bjiw)(' wtth 8 t t m  &tr?Butii 

i s t h r m  of the str-f mtbbile pliaa? m , t  

In the following, one considers the case of a binary (A-B) gradient where the component 

(8) with the largest eluotropic strength, i.e. the component whose concentration is increasing with 

time, is retained by the stationary phase and where the distribution isotherm of B is linear over all 

the range of concentrations encountered during the gradient. Admittedly. such a situation may not be 

very frequent as usually isotherms are linear Only in  a limited concentration range, but it is likely 
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FUNDAMENTAL RETENTION EQUATION 1821 

to offer a first-order approximation to cases where solvent demixing occurs. In these conditions, one 

can define capacity factor of the mobile phase component 8,  k'b, which does not depend on the 

component B concentration in the mobile phase. 

If, as assumed above, the column efficiency is  sufficiently large for the dispersion of the 

gradient to be negligible, a given mobile phase composition is  displaced i n  the column at a velocity Vb 

given by : 

Accordingly, the mobile phase composition present at time t at position z along the column i s  that 

which entered the column some time, Z/Vb, earlier. Then, the solute capacity f d o r  i s  equal to : 

or 

0y similarity with the introduction of equation 18 in the precedent case, rn defines a reduced time 

function Y BS : 

which gives : 
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1822 MARTIN 

dY - k'[c(O,Y)] - k'b 
(30) do - 

In practical situations, it is obvious that the right-hand side of equation 29 i s  positive, which means 

that the solute capacity factor is larger than the capacity factor of the strong component of the mobile 

phase. If this is not the m, the solute is eluted in  isocratic conditions by a mobile phase 

composition of initial composiiion. It msy happen that during the c o w s  of the gradient run, with 

increasing concentration of 8, the capacity factor of the solute becomes smaller than kb. It is then 

mwed by displacement chromatography at the velocity Vb. Equation 30 can be integrated by noting 

that, when z/L = 0, Y = 0 and that, When t / L  = 1 ,  Y = tr/h - ( 1 + k'b) : 

i.e., since Y has here the role of a dummy integration variable : 

As noted above this equation can be integrated up to the upper integrated l imit only i n  the c ~ s e  where 
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FUNDAMENTAL RETENTION EQUATION 1823 

the final solute k', i.e., k'[c(O, t'r/to - kb)], is larger than k'b. If it not the case, the integration 

has to be stopped when k"c( 0, t/f)l becomes equal to k'b, then the solute is displaced at the velacity 

Vb. If k b  is equal to zero, equation 32 obviously becomes identical to equation 23 obtained for a 

gradient displaced without modification. Equatim 32  has a form very similar to that established by 

Drake in  the first paper on the theory of gradient elution (Ref. 7, equation 17) for a linear 

distribution isotherm of the strong mobile phase component. 

The corrected retention time l'r obtained from equation 32 clearly depends on the value of 

k'b as well as on the shape of variation of the solute capity factor in  the eluent present at the 

column inlet as a function of time. One can integrate equation 32 i n  the specific OBSB of a linear 

solvent strength qadient, strongly attvocated by Snyder et 81. ( 1 , 17). Such a gradient is defined by : 

where S is a parameter called gradient steepness ( I ,  17). By noting kIo the solute capacity factor, 

k'[c(O, 011, at the. column inlet at the beginning of the gradient, one obtains when equation 33 is 

inserted in euuation 32 : 

The integration of this equation 1s relatively straigthforward and gives : 
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1824 

After development, one gets the expression of the corrected retention time : 

MARTIN 

It is easy to show that, i n  the limiting case of vanishing k'b, this equation becomes : 

As expected, this is the equation obtained by Sny& et al. for a linear solvent strength gradient 

wlthout any gradient deformation within the column ( 1 ,  17). These two equations give obviously 

different results for the computation of the retention time. In the limiting, but prxtical, cases of 

relatively small k'b and large k'o values, one m show that the difference between the reduced 

corrected retention times, which is also the difference between the reducsd retention times, given by 

equations 36 and 37 is simply equal to : 

This remarkably simple result, which does not depend on S or KO, holds approximately for k'b 

values up to about 5. This means that in  such a case, the true retention time wil l  exceed by 2.5 t,, the 

time calculsted from equation 37. Equations 36 to 38 can be used to extend the theoretical stu@ of 

gradient elution to cases where the strong component of the mobile phase is retained by the 

stationary phsse. It must be recalled here that they were obtained with the assumption that the 

distrlbution isotherm of this component i s  linear, which may not be true, in practical situations, for 

a wide range of variation of the concentration of this component. 
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FUNDAMENTAL RETENTION EQUATION 

SYMBOLS 

1825 

C 
k' 
t 
b 
tr 
rr 

Vb 
U 

U 
z 
F 
V 
V' 

Vm 
Vr 
V'r 
X 
Y 

composition of the mobile phase 
solute capacity factor 
time elapsed since the solute injection 
elution time of an inert solute 
solute retention time 
solute corrected retention time 
mobile phase chromatographic velocity 
migration velocity of the gradient 
solute migration velocity. 
position along the column axis 
mobile phase flow-rate 
volume of eluent which has flown from the column since the solute injection 
volume of eluent which has passed through the solute zone maximum since the solute 
injection 
volume of mobile phase contained in  the column 
solute retention volume 
solute corrected retention volume 
reduced t ime variable defined by equation 18 
reduced time variable defined by equation 28 
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