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Michel Martin
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SUMMARY

Basic integral equations used to predict the solute retention times or volumes in gradient
elution liquid chromatography are carefully examined. In order to simplify the integration
procedure, one strongly suggests 1o select a convention independent of the solvent composition for
defining the solute capacity factor. Most of thess equations make use of the volume V' of mobile phase
which hes pessed through the peak center (or band maximum) as the integration variable. 1t is
shown that, instead of V', one can use the volume V flowing from the column in these equations as the
integration variable in combination with retention conditions prevailing at the column inlet rather
than actually within the column, provided that the gradient is displaced without modification through
the column, 1.e. without retention of the mobile phase components. The general ratention equstion is
derived for 8 binery gradient where the strong component of the mobile phase is retained in such
conditions that its distribution isotherm is linear, i.6. it has a constant capecity factor, k'p. This

general equation is solved in the specific case of a linsar solvent strength gradient. It is shown that
the retention of the strong component of the mobile phase leads to an increase of the solute retention

time approximately equal to k' to / 2, where t; is the elution time of an inert solute.
1809
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INTRODUCTION

The technique of gredient elution liquid chromatography is widely practised today in
analytical laboratories. In this technique, the composition of the mobile phase entering the column is
modified during the course of the separation of a sample. The main objective pursued when
performing such a technique is to provide adequate resolution over most of the length of a
chromatogram of a relatively compiex sample (1). indeed, in constant mobile phese composition
(i.e., isocratic) liquid chromatography, the resolution of the early sluting compounds may be
impaired by Jack of adequate retention while the retention time of the most retained compounds may
be practically prohibitive and, at the same time, the concentration of thess solutes when they elute
from the column may be too low for adequate detection. Modifying the composition of the mobile phase
during a run allows to sslect an initial eluent compasition of sufficiently low solvent strength to
provide a satisfying retention of the first eluting compounds, then to increase the eluotropic strength
in order to maintein the retention of the last eluting solutes within & reassnable range. Gradient
elution analysis may be performed for reaching other goals, such as scouting the polarity range of an
unknown sample or selacting the optimal mobile phase for an isocratic separation (2).

It is obviously more complicated to perform s gradient elution analysis than an isccratic
separation. The chromatographer must indeed carefully select additional parameters which influence
the retention of the solutes as well as their separation, such as the initial and final compositions of
the mobile phase, the duration of the gradient run, the shape and rate of variation of the mobile phese
composition as a function of time and the mobile phase flow-rate. in order to take full profit of the
gradient elution capability of an instrument, one has to select optimal values of these interrelated
parameters for the sample at hand. This implies that one is able to derive the functional dependence
of the separation performances, and especially of the retention, on these parameters. Because the
solute migration in gradient elution does not occur in steady-state conditions, the expression of the

retention is more complex than in isocratic elution. In spite of this increased complication, the
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fundamental equation for the calculation of the retention volume (or, of the retention time) in
gradient elution has been claimed to be derived “"without difficuity” (3) or, even, “easily” {4).
However, when one looks at the various equations of retention published in the literature, one is
striken by the fact that, firstly, different basic expressions are used, and, secondly, that when
similar equations are used, the variables entering these eguations do not always have the same
meaning.

The purpose of this note is to describe in which conditions these different equations are

equivalent and emphasize the approximations done at each step of their derivation.

THEORY

Fundsmental retention agustion in gradient elution liguid chromalay-sphy

The derivation of the retention equation of a solute in gradient elution proceeds from
integration of the elementary migration steps of this solute in an envirenment of a fixed composition.
in the following, as usually done in analylical chromatography, a very smail amount of solute is
supposed to be injected at the inlet of the column during a very short time, at time 0. After a time 1,
the solute has migrated a distance z along the column axis. Here, 2 refers to the location of the center
of gravity of the solute zone at time t. in this note focusing on solute retention in gradient elution, one
neglects the variation of eluent composition within the solute 2one, that is, one assumes that the
column is of sufficiently high efficiency for these variations to be negligibly small. In these
conditions, the solute, at position z et time {, is surrounded by a mobile phase of a given composition
c(z, t). During the time increment dt, the solute is displaced a distance dz which depends on its

migration veloctly, #[c(z, 1)], in this mobile phase composition :



14:22 24 January 2011

Downl oaded At:

1812 MARTIN

n dz= vlc(z, )] dt

According to the classical chromatographic theory, the solute velocity is related to the mabile phase

chromatographic velocity, u, through the solute capacity factor, k' :

(2) v=u/(1+k)

In the following, one assumes that the solute concentration will be small enough for its distribution
isotherm between the mobile and stationary phases to be linear, so thal k' is a constant
Furthermore, one will assume it is so whatever the mobile phase composition. From equations 1 and
2, one obtains the expression of the basic elementary migration step in gradient elution liquid
chromatograpby :

= udt
()@= T

It has to be noted that, although commonly used, the concept of capacity factor is not in
liguid chromatography, where multicomponent mabile phases are used, as straigthforward as it is in
gas chromatography. |ndeed, basically, k' represents the ratio of the number of moles of solute in the
stationary phase to the number of moles of solute in the mobile phase. Bscause with multicomponent
phases, a composition gradient generally is developed at the vicinity of the interfacs, an arbitrary
convention has to be defined about the position of the surface dividing the two phases in order to be
able to count the number of moles of solutes in each side of the interface. Therefore, the value of the
capacity factor is associsted o the sslected convention. Verious conventions can possibly be ssiscted

in liquid chromatography (5). They lead to various possible values of the volume of the mobile

phase, Vi, contained in the column. Some of the pessible conventions depend on the compasition of the
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mobile phase, and so do the corresponding Yy, values. One imagines egsily that such a situation poses

a considerable problem when trying to compute the retention volume or retention time of a solute in
gradient elution conditions, where the composition of the mobile phase is constantly changing. The

necessity of simplification required for solving the gradient elution retention equation provides a
strong argument for selecting a convention which gives a Vy, value independent on the mobile phase

composition. Such is the case for the mobile phase volume determined by the weighing method using

two solvents of different densities (6).

One will assume in the following that such a convention is adopted. As ¥y, is unambiguously
defined and is constant whatever the mobile phase present in the column, so are the mabile phase
velocity, u, provided that the flow-rate, F, is constant, and the slution time, 15, of an inert solute,

i.e. a solute which is displaced along the column at the velacity of the mabile phase, since we have :

(4 u=FL/Vy

and:

(5) tg=V¥p/F=L/u

where L is the column length. Using equations 4 and 5, one obtains a reduced form of the differential

equation 3:

d(t/te)

which represents the incremental fractional displacement distance along the column during the time
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interval dt relative to t, which serves as a scale for measuring the time. The solute retention time,

tr, which is the time at which the solute has been displaced a length L, is then obtained from the

upper limit of integration of the right-hand side of this equation :

ir/tg

! . dt/tg)
™ fod(zm - 'f T+ KoL, Vi
0

The variation of the mabile phase composition ¢ with the position and time has 1o be known as well as

the dependence of k' on ¢ in order to solve this equation. A very similar equation can be writlen to
express the retention volume of & solute, Yy, instead of its retention time. As V- isequal toF ., one

easily obtains using equation 5 :

Ye/¥m
®  1- I AV )
0

1+ Kle(2/L, YAV m)]

where V is the volume of mobile phase which has flown from the column since the solute injection.
Here k'[c(2/L, ¥/Vy)] repressnts the solute capacity factor in the mobile phase composition present

at distance 2 from the column when a volume V of mobile phass has flown from the column.

Alternalivs rundsmental retention agustion 1ar gradisnt elution

Although expressions simflar to equations 7 or 8 are found in the literature ( 7), mast of
the basic retention equations are written in different forms by considering not the incremental
volume of eluent which hes flown from the column but the incremental volume of sluent which has
passed through the solute zone maximum. It 1s quite important to correctly distinguish these two

volumes. Let us consider first the solute migration in an isocratic analysis. If a solute is unretained,
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it is displaced along the column by the flow of incoming eluent, ahead of this fresh eluent. Its elution
volume is equal 1o Vp,, the volume of mobile phase contained in the column. If, now, the solute is
retained, it spends some time in the stationary phase and a larger volume of mobile phase, Vy, is
required to eluté it from the column. This volume is made of the volume Vi, necessary to sweep the
mobile phase already contained in the column before the solute injection, and of an additional part,
V', the corrected retention volume, required to “extract” the solute from the stationary phase.
Henge, Y'r, which is equal to k' ¥y, is the volume of mobile phase which passes through the solute

peak maximum during the time spent by the solute in the column (rigorously, V'p shouid be the

volume of eluent which passes through the center~of-gravity of the solute zone during the time it is

in the column, but, as the solute zone has been assumed to be very narrow, the peak maximum and
the peak center-of-gravity are supposed to be identical). If a volume V', must pass through the pesk

maximum before the peak is eluled, i. e before it migrates a distance equal to the length L of the
column, the incremental volume dV' which has to pass through the psak to displacs it by a distance dz

is then such that :

(9) W /Vp=d/L

which gives :

(10) @' =K'Vqdz/L

This equation serves as the basis of various retention equations in gradient elution

chromatography ( 1, 8-17). By integration, it gives:
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V'r/Vm

! . d(V' N )
an fo /) = 1 'I KT/ A)]
0

where k'[c(2/L, V'/Vy)] represents the instantaneous value of the capacity factor of the solute in

the mobile phase composition present at distance z from the column inlet when a volume V' of mobile
phase has passed through the peak maximum. Equetions 8 and 11 are equally correct and can both be
used to describe the retention characteristics in gradient elution. However, it is interesting to
emphasize their difference : 1) their denominators represent the spatio-temporal dependence of k'
and 1 + k', respectively; 2) they provide as the integration limits, the retention volume and the

corrected retention volume, which like in isocratic elution are related by :
(12) Vr=V'r*Vm

and 3) the integration variable is, in one case, the volume which of eluent which flows rram the
column(or, which is equivalent, into the column) and, in the other case, the volume of eluent w/iys
passes througl: the peak maximum 1t is important 1o correctly distinguish these two variables.

Indeed, from above equations, one can esasily write:

(13) v = v K

In fact, one finds in the literature, retention equations similar o equation 11 in which the

integration variable is mistakenly written to be the volume V of gluent entering the column.

Practical basic relention exstions

In ordsr to use equations 8 (or 7) and 11, for computing the retention characteristics, it
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is necessary to know 1) the dependence of k' on the mobile phese composition, 2) the gradient profile
delivered by the gradient generator, i. ., the curve of variation of the mobile phase composition
entering the column as a function of time (in this treatment, one neglects the time delay introduced
by the connecting tubss between the gradient delivering unit and the column inlet, but teking into
account this time is relatively straigthforward, see Refs. 1 and 15), and 3) the rate of
trensportation of the different mobile phase compesitions within the column. The dependence of k' on
¢ depends on the type of chromatographic system (ion-exchange, adsorption, reversed-phase, ... ) and
can be known either using an appropriate retention model or by experimental measurement, The
composition dependence on time at the column inlet is generally selected by the chromatographer and,
thus, known. Much less accessible to the analyst is the rate of transportation of a given composition
within the column and much more complicated are the solutions of equations 8 or 11 in the case of &
complex mode of transportation of the gradient.

This is one of the reasons for which all modern theoretical treatments of gradient elution
assume that e gradisnt is transported unmaditied within the column, i. e. they do not change their
shape in the column and they are displaced at the constant velocity of the eiuent. in this condition, it
is relatively easy to relate the composition at a given point in the column to the composition at the
column inlet. indeed, at time t, the composition at distance z from the column inlet is equal to the

composition which entered the column some time, 2/u, earlier :

(14) c(z,t) = ¢(0,t-2/u)

or, in reduced coordinates, sinceL = u ty:

(15) o2/, t/ty) = o0, t/ty - 2/L)

Equation 7 becomes immediately :
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tr/to o
d(trt B
(16) f TTRTe0, Vtg=2/00T
0

Similarly, one has :

-
(17) ] AV /¥m) =1
0

1+ k{c(0,¥/¥m-2/1)]

These equations can be solved if one knows the functions k'(c) and c(t or V) &t the column entrancs.

Let replace in equation 16 the variable /1y by the new variable X such that :

(18) X =ty-2/L

One has :

& _ dt/tg
(19) d(z/L)  d(z/L)

According to equations 6 and 15, one has :

(20) a1ty _

A0 1+ k{e(0, t/tg~ 2/0)]

Combining equations 19 and 20 gives :

(21) = kTe(0,X)]

-
d(z2/L)
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This equation can be integrated by noting that, for z/L=0, X=0 and that, for z/L=1, X=tp/tg - 1:

tr/tg- 1
1 . J‘ o
k'Tc(0,X)]
0 0

~
N
N
~
2
N
N
[ end
~

#

]

it is seen in this equation, where the reduced time variable X serves as a dummy integration
variable, that the integrand only depends on the compasition of the mobile phase at the column inlet.

Since the second integral in equation 22 represents a time function of the mobile phase composition

integrated between times O and tp-/ t5 - 1, it can be written &s:

t'r/lo o
dt/t .
(23) f TER I
0

where the upper integration limit is the corrected retention time, U, scaled to 15, As t' is equal to

V' / F, one can write equation 23 in terms of volume, which gives, using the same correspondence

s that between equations 7 and 8 :

¥Y'r/VYm ( |

WV

(24) I IO VAmT
0

Equation 24 has been used frequently to compute the corrected retantion volumes in various gradient
glution situetions (1, 14, 15). It closely resembles equation 11 as il contains only k' in the
denominator and gives the corrected retention volume (not the retention volums) in the uppsr

intagration 1imit. However, there are two major differences between thess two equations : 1) the
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integration variable is now V¥, the etuent volume flowing from (or into) the column (not the volume
passing through the solute zone center), 2) k' refers to the value in the mobile phase composition at
the column inlet, not at the actuat localion of the peak maximum (or center) in the column. This
considerably simplifiss the computation of the retention volume. However, it has not always been
perceived that this simplification is made possible sesuse of the sssumplion that the gradient Is
displaced unperturbed slong ihe column, s demonstrated above.

Such an assumption implies that there is no distortion of the gradient profile by
dispersion as well as no uptake of the stronger component of the mobile phase by the stationary phase
(3, 16). This is usually a situation encountered in reversed-phase liquid chromatography with
gradient of methanol, acetonitrile or tetrahydrofuran in water, these compounds being generally only
weakly retained by the initial mobile phase and frequently much less retained than the sample
solutes. [n spite of their low intrinsic retention, thess solvents can be very effective in reducing the
retention of other compounds. This is because of the paramount role of mebile phase interactions in
this chromatographic mode. The situation may be quite different in other types of chromatographic
systems where interactions in the stationary phase play a major role on retention, such as in
ion-exchange chromatography or in adsorption lquid chromatography. In these cases, if the two
mobile components differ greatly in retention properties, the adsorption of the strongest component

on the stationary phase leads to the so-calied demixing effect.

Generdl retention equalion in the vase of 8 binary gradient with a8 lingsr distribution
Isothermm of the strongest mobile plase component

In the following, one considers the case of a binary (A-B) gradient where the component
(B) with the largest eluotrapic strength, i.e. the component whose concentration is increasing with
time, is retained by the stationary phase and where the distribution isotherm of B is Tinear over all
the range of concentrations encountered during the gradient. Admittedly, such a situation may not be

very frequent as usually isotherms are linear only in a limited concentration range, but it is likely
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to offer a first~order approximation to cases where solvent demixing occurs. In these conditions, one
can define capecity factor of the mobile phase component B, k'y, which does not depend on the

component B concentration in the mobile phase.

If, 85 assumed above, the column efficiency is sufficiently large for the dispersion of the
gradient to be negligible, a given mobile phase compesition is displaced in the column at a velocity vy

given by :

(25)  wvp=u/{1+kyp)

Accordingly, the mobile phase composition present at time t at position 2 along the column is that

which entered the column some time, 2/vp, earlier. Then, the solute capacity factor is equal to:

(26) kie(z, 0] = K'[e(0, t- (1+k'pl2/w)]

or:

(27)  wle(2/L,t7t9)] = K[e(0, /g - (1+k'pl2/L]

By similarity with the introduction of equation 18 in the precedent cese, one defines 4 reduced time

functionY as :

(28) Y =tg-(1+kp 2L

which gives :
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(29) @y _ dt/tg) _

(/L)  d(z/L) (1+ k)

Combining equations 6, 27, 28 and 29, one gets :

dY - * - b
(30) T k'Te(0,Y)] -k'p

In practical situations, it is obvious that the right-hand side of equation 29 is positive, which means
that the solute capacity factor is larger than the capacity factor of the strong component of the mobile
phese. If this is not the case, the solute is eluted in isocratic conditions by & mobile phase

composition of initial composition. It may happen that during the course of the gradient run, with

increasing concentration of B, the capacity factor of the solute becomes smaller than k'p. It is then
moved by displacement chromatography at the velocity vp. Equation 30 can be integrated by noting

that, when2/L = 0, Y = Oand that, when 2/L = 1,Y = 4/ - (1+k'p) :

Y _(1ekp)

(31) '« /L) =1 = &
o AT KTe(0, 0T - Kp

i.e., since Y has here the role of adummy integration variable :

tr .
—-=K'p
d(t/tg)

(32) K00, VioT=kg

As noted above this equation can be integrated up to the upper integrated Timit enly in the case where
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the final solute k', i.e., k'(e(0, t'r/tg - K'p)], is larger than k'p. !f it not the cass, the integration
has to be stopped when k'[¢( 0, /)] becomes equal 1o k'p, then the solule is displaced at the velacity

vp. If k' is equal to 26ro, equation 32 obviously becomes identical to equation 23 obtained for a

gradient displaced without modification. Equation 32 has a form very similar to that established by
Drake in the first paper on the theory of gradient elution (Ref. 7, equation 17) for a linear

distribution isotherm of the strong mobile phase component.

The corrected retention time ' abtained from equation 32 clearly depends on the vaiue of

k'p as well as on the shape of variation of the solute capacity factor in the eluent present at the

column inlet as a function of time. One can integrate equation 32 in the specific case of a linear
solvent strength gradient, strongly advocated by Snyder et al. ( 1, 17). Such a gradient is defined by :

(33) logk'{c(0, )] = logk'[c(0, 0] - Sty

where S is a parameter called gradient steepness (1, 17). By noting k'q the solute capacity factor,

k'[c(0, 0)1, at the column iniet at the beginning of the gradient, one obtains when eguation 33 is

inserted in equation 32 :
0
(34) 2‘;)(;/:7: =1
k'oe % xp
0

The integration of this equation is relatively straigthforward and gives :

te _ 1 K'o-k'd
35 — = =1
(35) to S % " e-2.33(l‘r/to‘ K'p)
0 -

K'h
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After development, one gets the expression of the corrected retention time:

(36) U0 - L 14+ Ko(e233K0 4,
to S k't

1t is easy to show that, in the limiting case of vanishing k'p, this equation becomes :

31 It o Lig(1+235K)
to S

As expected, this is the equation obtained by Snyder et al. for a linear solvent strength gradient
without any gradient deformation within the column (1, 17). These two equations give obviously
different results for the computation of the retention time. in the limiting, but practical, cases of
relatively small k'yy and large k' values, one can show that the difference between the reduced
corrected retention times, which is also the difference between the reduced retention times, given by

equations 36 and 37 is simply equal to:
(38) (ir - tr - (& S - Kb
tofp+0 \lojkp~0 tofp=0 \lofkp=0 2

This remarkably simple result, which does not depend on S or K'p, holds approximately for k'y

values up to about 5. This means that in such a case, the true retention time will exceed by 2.5 tg the
time calculated from equation 37. Equations 36 1o 38 can be used 1o extend the theoretical study of
gradient elution to cases where the strong component of the mobile phase is retained by the
stationary phase. It must be recalled here that they were obtained with the assumption that the
distribution isotherm of this component is linear, which may not be trus, in practical situations, for

a wide range of variation of the concentration of this compenent.
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SYMBOLS

c composition of the mobile phase

k' solute capacily factor

{ time elapsed since the solute injection

1% elution time of an inert solute

te solute retention time

t'r solute corrected retention time

u mabile phase chromatographic velocity

¥h migration velocity of the gradient

'] solute migration velocity.

2 position along the column axis

F mobile phase flow-rate

Y volume of elusnt which has flown from the column since the solute injection

v volume of eluent which has passed through the solute zone maximum since the solute

injection

Ym volume of mobile phase contained in the column

Vr solute retention volume

Yy solute corrected retention volume

X reduced time variable defined by equation 18

Y reduced time variable defined by equation 28
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